Throughout this posting, the expressions ∑vars:condsf(vars)and∏vars:condsf(vars) will refer to the sum and product of f(vars) over all possible values of vars subject to the constraints conds, respectively.
Theorem. (Determinant of a Cauchy matrix) Let A be an n×n matrix with elements aij in the form aij=1xi+yj. (Think of A as an matrix over the field of rational functions in variables xi's and yj's.) Then det
Proof. We prove the claim by induction on n. The base case is clearly true, so it suffices to establish the inductive step.
Suppose that the claim holds for all (n-1)\times(n-1) matrices. Also, recall that if p(z) is a polynomial of degree less than n and if \alpha_1, \ldots, \alpha_n are distinct, then we have the partial fraction decomposition \frac{p(z)}{\prod_{j} (z - \alpha_j)} = \sum_{k} \frac{p(\alpha_k)}{(z - \alpha_k) \prod_{j \mathbin{:} j \neq k} (\alpha_k - \alpha_j)}. So, by regarding x_n as the variable and applying the partial fraction decomposition, \begin{align*} &\frac{\prod_{i \mathbin{:} i \lt n} (x_i - x_n)}{\prod_{j} (x_n + y_j)} \\ &= \sum_{k} \frac{\prod_{i \mathbin{:} i \lt n} (x_i + y_k)}{(x_n + y_k) \prod_{j \mathbin{:} j \neq k} (y_j - y_k)} \\ &= \sum_{k} (-1)^{n-k} \frac{\prod_{i \mathbin{:} i \lt n} (x_i + y_k)}{(x_n + y_k) \bigl[ \prod_{j \mathbin{:} j \lt k} (y_j - y_k) \bigr]\bigl[ \prod_{j \mathbin{:} k \lt j} (y_k - y_j) \bigr]} \end{align*} From this, it follows that \begin{align*} &\frac{\prod_{i, j \mathbin{:} i \lt j} (x_i - x_j)(y_i - y_j)}{\prod_{i, j} (x_i + y_j)} \\ &= \frac{\bigl[ \prod_{i, j \mathbin{:} i \lt j \lt n} (x_i - x_j) \bigr]\bigl[ \prod_{i, j \mathbin{:} i \lt j} (y_i - y_j) \bigr]}{\prod_{i, j \mathbin{:} i \lt n} (x_i + y_j)} \cdot \frac{\prod_{i \mathbin{:} i \lt n} (x_i - x_n)}{\prod_{j} (x_n + y_j)} \\ &= \sum_{k} \frac{(-1)^{n-k}}{x_n + y_k} \cdot \frac{\bigl[ \prod_{i, j \mathbin{:} i \lt j \lt n} (x_i - x_j) \bigr]\bigl[ \prod_{i, j \mathbin{:} i \lt j; i \neq k; j \neq k} (y_i - y_j) \bigr]}{\prod_{i, j \mathbin{:} i \lt n; j\neq k} (x_i + y_j)} \end{align*} However, the last line is precisely the cofactor expansion of \det A along the nth row, where the determinants of the submatrices are computed using the inductive hypothesis. Therefore the inductive step is established and the proof is done. \square
No comments:
Post a Comment