Write [n] for the set {1,2,…,n} and ([n]k) for the family of all subets of [n] and size k. Also, for an m×n matrix X, I⊆[m], and J⊆[n], let XI,J denote the submatrix obtained from X by deleting row i for each i∉I and column j for each j∉[J].
Theorem. (Cauchy–Binet formula) Let A be a k×n matrix and B be an n×k matrix over the field F. Then det(AB)=∑S⊆([n]k)det(A[k],SBS,[k]).
1st Proof. Let (e1,…,em) denote the standard basis of Fm. (For convenience, we will abuse the notation so ei stands for the ith standard basis vector in any of Fm, m≥i.) Then det(AB)(e1∧⋯∧ek)=(⋀kAB)(e1∧⋯∧ek)=(⋀kA)[(Be1)∧⋯∧(Bek)]. Now by noting that Bej=∑ni=1Bijei is the jth column of B, we may expand the exterior product in the last line as [(Be1)∧⋯∧(Bek)]=∑ρ:[k]→[n]σ injective(Bρ(1),1eρ(1))∧⋯∧(Bρ(k),keρ(k))=∑σ:[k]→[n]σ increasing∑τ:[k]→[k]τ bijective(k∏i=1Bσ(τ(i)),i)(eσ(τ(1))∧⋯∧eσ(τ(k)))=∑σ:[k]→[n]σ increasing∑τ:[k]→[k]τ bijectivesgn(τ)(k∏i=1Bσ(τ(i)),i)(eσ(1)∧⋯∧eσ(k))=∑σ:[k]→[n]σ increasingdet(Bσ([k]),[k])(eσ(1)∧⋯∧eσ(k)) Plugginb this back, we therefore get det(AB)(e1∧⋯∧ek)=∑σ:[k]→[n]σ increasingdet(Bσ([k]),[k])[(Aeσ(1))∧⋯∧(Aeσ(k))]=∑σ:[k]→[n]σ increasingdet(Bσ([k]),[k])det(A[k],σ([k]))(e1∧⋯∧ek)=∑S∈([n]k)det(A[k],S)det(BS,[k])(e1∧⋯∧ek). This completes the proof. ◻
2nd Proof. We specialize in the case F=C. Also, for each index set I, we abbreviate ∧i∈Iei=∧I. Then using inner product between multivectors, we get det(AB)=⟨(∧kA∗)(∧[k]),(∧kB)(∧[k])⟩=∑S∈([n]k)⟨(∧kA∗)(∧[k]),∧S⟩⟨∧S,(∧kB)(∧[k])⟩=∑S∈([n]k)det(A[k],S)det(BS,[k])
A similar technique shows:
Proposition. (Coefficients of a characteristic Polynomial) Let A be an n×n matrix. Then det(zIn+A)=n∑k=0zn−k∑S⊆([n]k)det(AS,S).
Proposition. Let a1,…,ap∈C and v1,…,vp∈Cn. Then det(p∑j=1ajvjv∗j)=∑{j1<…<jn}⊆[p](aj1⋯ajn)|det(vj1,…,vjn)|2.
No comments:
Post a Comment