Processing math: 100%

Tuesday, June 7, 2022

Cauchy–Binet formula

Write [n] for the set {1,2,,n} and ([n]k) for the family of all subets of [n] and size k. Also, for an m×n matrix X, I[m], and J[n], let XI,J denote the submatrix obtained from X by deleting row i for each iI and column j for each j[J].

Theorem. (Cauchy–Binet formula) Let A be a k×n matrix and B be an n×k matrix over the field F. Then det(AB)=S([n]k)det(A[k],SBS,[k]).

1st Proof. Let (e1,,em) denote the standard basis of Fm. (For convenience, we will abuse the notation so ei stands for the ith standard basis vector in any of Fm, mi.) Then det(AB)(e1ek)=(kAB)(e1ek)=(kA)[(Be1)(Bek)]. Now by noting that Bej=ni=1Bijei is the jth column of B, we may expand the exterior product in the last line as [(Be1)(Bek)]=ρ:[k][n]σ injective(Bρ(1),1eρ(1))(Bρ(k),keρ(k))=σ:[k][n]σ increasingτ:[k][k]τ bijective(ki=1Bσ(τ(i)),i)(eσ(τ(1))eσ(τ(k)))=σ:[k][n]σ increasingτ:[k][k]τ bijectivesgn(τ)(ki=1Bσ(τ(i)),i)(eσ(1)eσ(k))=σ:[k][n]σ increasingdet(Bσ([k]),[k])(eσ(1)eσ(k)) Plugginb this back, we therefore get det(AB)(e1ek)=σ:[k][n]σ increasingdet(Bσ([k]),[k])[(Aeσ(1))(Aeσ(k))]=σ:[k][n]σ increasingdet(Bσ([k]),[k])det(A[k],σ([k]))(e1ek)=S([n]k)det(A[k],S)det(BS,[k])(e1ek). This completes the proof.

2nd Proof. We specialize in the case F=C. Also, for each index set I, we abbreviate iIei=I. Then using inner product between multivectors, we get det(AB)=(kA)([k]),(kB)([k])=S([n]k)(kA)([k]),SS,(kB)([k])=S([n]k)det(A[k],S)det(BS,[k])

A similar technique shows:

Proposition. (Coefficients of a characteristic Polynomial) Let A be an n×n matrix. Then det(zIn+A)=nk=0znkS([n]k)det(AS,S).

Proposition. Let a1,,apC and v1,,vpCn. Then det(pj=1ajvjvj)={j1<<jn}[p](aj1ajn)|det(vj1,,vjn)|2.

No comments:

Post a Comment