Proposition. We have limn→∞n!nn+12e−n=√2π.
Proof. Using the integral representation of the factorial, n!nn+12e−n=√nen∫∞0xne−nxdx. Substituting x=1+u√n and writing x+:=max{0,x} for the positive part of x, =∫∞−∞(1+u√n)n+e−√nudu. Using basic calculus, it is easy to prove that log(1+x)≤x−x22(1+x+) holds for all x>−1. From this, we get (1+u√n)n+e−√nu≤e−u22(1+u+) holds for all n≥1 and for all u∈R. So by the dominated convergence theorem, limn→∞n!nn+12e−n=∫∞−∞limn→∞(1+u√n)n+e−√nudu=∫∞−∞e−u22du=√2π.
이형 아직 살아계시네 ㅋㅋ
ReplyDeletehttps://blog.naver.com/rowhtla456
옛날에 인터넷 이웃