Theorem. Let (X,F,μ) be a measure space, fn:X→[0,∞] a sequence of measurable functions converging almost everywhere to a measurable function f so that fn≤f for all n. Then lim
Note that f need not be integrable and (f_n) need not be monotone increasing.
Proof. By the Fatou's lemma, \int_{X} f \, \mathrm{d}\mu = \int_{X} \varliminf_{n\to\infty} f_n \, \mathrm{d}\mu \leq \varliminf_{n\to\infty} \int_{X} f_n \, \mathrm{d}\mu \leq \varlimsup_{n\to\infty} \int_{X} f_n \, \mathrm{d}\mu \leq \int_{X} f \, \mathrm{d}\mu.