Tuesday, April 24, 2018

Some characterization of the Shannon entropy

Lemma. Let $f : \mathbb{Z}^+ \to \mathbb{R}$ satisfy the following two conditions

  • $f(mn) = f(m)+f(n)$ for all $m, n \in \mathbb{Z}^+$,
  • $\lim_{n\to\infty} (f(n+1) - f(n)) = 0$.
Then there exists $c \in \mathbb{R}$ such that $f(n) = c\log n$ for all $n \in \mathbb{Z}^+$.

Proof. Define $\delta_i = \max\{ |f(n+1) - f(n)| : 2^i \leq n < 2^{i+1} \}$. By the assumption, we know that $\delta_i \to 0$ as $i\to\infty$. Now let $n \geq 2$, and for each $k \geq 1$ we write $$ n^k = \sum_{j=0}^{L_k} a_j 2^j, \qquad a_j \in \{0, 1\} \quad \text{and} \quad a_{L_k} = 1. $$ Then by using the fact that $f(a_{L_k}2^{L_k}) = L_k f(2)$, we can write \begin{align*} \left| \frac{f(n^k)}{L_k} - f(2) \right| &\leq \frac{1}{L_k} \sum_{l=0}^{L_k-1} \left| f\left( \sum_{j=l}^{L_k} a_j 2^k \right) - f\left( \sum_{j=l+1}^{L_k} a_j 2^k \right) \right| \\ &= \frac{1}{L_k} \sum_{l=0}^{L_k-1} \left| f\left( \sum_{j=l}^{L_k} a_j 2^{k-l} \right) - f\left( \sum_{j=l+1}^{L_k} a_j 2^{k-l} \right) \right| \\ &\leq \frac{1}{L_k} \sum_{l=0}^{L_k-1} \delta_{L_k - l} = \frac{1}{L_k} \sum_{i=1}^{L_k} \delta_{i}. \end{align*} Since $L_k = \lfloor k \log_2 n \rfloor$ tends to $\infty$ as $k\to\infty$, by Stolz–Cesàro theorem, this bound converges to $0$. So $$ f(2) = \lim_{k\to\infty} \frac{f(n^k)}{L_k} = \lim_{k\to\infty} \frac{k f(n)}{\lfloor k \log_2 n \rfloor} = \frac{f(n)}{\log_2 n}, $$ and $f(n) = c \log n$ with $c = f(2)/\log 2$. When $n = 1$, we have $f(1) = f(1^2) = 2f(1)$ and hence $f(1) = 0 = c \log 1$, completing the proof. ////

This lemma is the key step for proving the theorem of Faddeev. To state this theorem, let $$\Delta^n = \{ (p_1, \cdots, p_n) \in [0, \infty)^n : p_1 + \cdots + p_n = 1 \}$$ and $\mathtt{Prob} = \bigcup_{n=1}^{\infty} \Delta^n$ the set of all probability vectors.

Theorem. (Faddeev)[1] Let $H : \mathtt{Prob} \to [0, \infty)$ satisfy the following properties

  1. $H$ is a symmetric function on each $\Delta^n$.
  2. $H$ is continuous on $\Delta^2$.
  3. $H(\frac{1}{2}, \frac{1}{2}) = 1$.
  4. $H(t p_1, (1-t)p_1, p_2, \cdots, p_n) = H(p_1, \cdots, p_n) + p_1 H(t, 1-t)$.
Then $H$ is the Shannon entropy: $$ H(p_1, \cdots, p_n) = - \sum_{i=1}^{n} p_i \log_2 p_i. $$

Proof. We extend $H$ onto the cone $\{ \lambda p : p \in \mathtt{Prob}, \lambda > 0 \}$ by setting $$H(\lambda p) = \lambda H(p), \qquad \forall p \in \mathtt{Prob}, \lambda > 0.$$ Then the condition 4 can be rephrased as $$H(p_0, p_1, p_2, \cdots, p_n) = H(p_0+p_1, p_2, \cdots, p_n) + H(p_0, p_1). \tag{1}$$ By applying $\text{(1)}$ repeatedly, we find that \begin{align*} H(p_1, \cdots, p_n) &= \sum_{k=2}^{n} H(p_1 + \cdots + p_{k-1}, p_k). \end{align*} This tells that $H$ is continuous on each $\Delta^n$ as well. By the same argument, we also find that \begin{align*} &H(p_1, \cdots, p_n, q_1, \cdots, q_m) \\ &= H(p_1+\cdots+p_n, q_1, \cdots, q_m) + \sum_{k=2}^{n} H(p_1 + \cdots + p_{k-1}, p_k) \\ &= H(p_1+\cdots+p_n, q_1, \cdots, q_m) + H(p_1, \cdots, p_n), \tag{2} \end{align*} which generalizes the property $\text{(1)}$. Now define $f(n) = H(\frac{1}{n}, \cdots, \frac{1}{n})$. By applying $\text{(2)}$, we obtain $$ f(mn) = f(m) + f(n). $$ Next we show that $f(n+1) - f(n) \to 0$ as $n\to\infty$. In view of Stolz–Cesàro theorem together with $f(2^n)/2^n = n/2^n \to 0$, we know that the only candidate for the limit is zero. Also, by $\text{(2)}$ we easily find that $$(n+1)f(n+1) = H(n,1) + nf(n).$$ So $nf(n)$ is increasing and $$ 0 \leq nf(n) \leq 2^{\lceil \log_2 n\rceil } f(2^{\lceil \log_2 n\rceil }) = 2^{\lceil \log_2 n\rceil } \lceil \log_2 n\rceil. $$ This tells that $ f(n) = \mathcal{O}(\log n)$ and hence $$ f(n+1) - f(n) = H\left(\frac{n}{n+1}, \frac{1}{n}\right) - \frac{1}{n+1}f(n) $$ converges as $n\to\infty$ by the continuity of $H$ on $\Delta^2$. So this limit must be zero, and by the lemma, $f(n) = \log_2 n$. Now if $(\frac{a_1}{N}, \cdots, \frac{a_n}{N}) \in \Delta^n$, then by $\text{(2)}$, \begin{align*} H\left( \frac{a_1}{N}, \cdots, \frac{a_n}{N} \right) &= f(N) - \sum_{k=1}^{N} \frac{a_k}{N} f(a_k) \\ &= - \sum_{k=1}^{N} \frac{a_k}{N} \log_2 \frac{a_k}{N} \end{align*} and hence $H$ equals the Shannon entropy for probability vectors with rational coordinates. Then the general case follows by the continuity and the proof is complete.

References.

  • [1] Rényi, Alfréd. On measures of entropy and information. HUNGARIAN ACADEMY OF SCIENCES Budapest Hungary, 1961.

Thursday, February 15, 2018

A proof of Burnside's lemma

Theorem. Let $G$ be a finite group acting on a set $X$. Write $\operatorname{Fix} g = \{ x \in X : g \cdot x = x\}$ for $g \in G$ and $\operatorname{Orb} x = \{ g \cdot x : g \in G\}$ for $x \in X$. (The latter is called an orbit of $x$.) If $X/G$ denotes the set of orbits on $X$, then \begin{align*} |X/G| = \frac{1}{|G|} \sum_{g \in G} \left| \operatorname{Fix} g \right|. \end{align*}

The proof is essentially counting the set $G\times X$ in two ways. Let $\gamma$ be a uniform distribution over $G$ under the law $\mathsf{P}$. The probabilistic analogue of the Lagrange's theorem is as follows:

Lemma. $\gamma.x$ has the uniform distribution over the orbit $\operatorname{Orb} x$ for each $x\in X$.

Proof of Lemma. $\gamma \cdot x$ takes values only in $\operatorname{Orb} x$, and for each $y \in \operatorname{Orb} x$ there exists $h \in G$ for which $x = h \cdot y$. Since each map $g \mapsto hg$ is a bijection on $G$, we know that $h\gamma$ is also uniform over $G$, thus has the same law as $\gamma$. Therefore $$ \mathsf{P}[\gamma \cdot x = y] = \mathsf{P}[h\gamma \cdot x = h \cdot y] = \mathsf{P}[\gamma \cdot x = x], $$ which proves that $\gamma \cdot x$ is uniform over $\operatorname{Orb} x$. ////

Returning to the original proof, notice that $X/G$ is a partition of $X$. So \begin{align*} \frac{1}{|G|} \sum_{g \in G} \left|\operatorname{Fix} g\right| &= \mathsf{E}[\left|\operatorname{Fix} \gamma\right|] = \mathsf{E}\left[ \sum_{x\in X} \mathbf{1}_{\{\gamma \cdot x = x\}} \right] = \sum_{x\in X} \mathsf{P}[\gamma \cdot x = x] \\ &= \sum_{O \in X/G} \sum_{x \in O} \mathsf{P}[\gamma \cdot x = x] = \sum_{O \in X/G} \underbrace{\sum_{x \in O} \frac{1}{|O|}}_{=1} = |X/G|. \end{align*}

Saturday, February 3, 2018

Weighted Right Convex Function (WRCF) Theorem

Theorem. Suppose that $f : I \to \mathbb{R}$ be a function on an interval $I$ and that there exists $s \in I$ such that $f$ is convex on $I \cap [s,\infty)$. Then for any $p_1,\cdots,p_n \in (0, 1]$ satisfying $\sum_{i=1}^{n} p_i = 1$ and $p = \min\{p_1,\cdots,p_n\}$, the followings are equivalent:

  1. For any $x_1, \cdots, x_n \in I$ such that $\sum_{i=1}^{n} x_i p_i \geq s$, we have $$f\left(\sum_{i=1}^{n} x_i p_i \right) \leq \sum_{i=1}^{n} f(x_i) p_i. $$
  2. For any $x, y \in I$ satisfying $x \leq s \leq y$ and $p x + (1-p)y = s$, we have $$p f(x) + (1-p)f(y) \geq f(s)$$

The following proof is an adaptation of the argument of [CVB11] in probabilistic language.

Proof. The direction $1 \Rightarrow 2$ is straightforward. So we prove the converse. We need the following easy lemma:

Lemma. Let $f : [a, b] \to \mathbb{R}$ be convex. Suppose that $\mu$ and $\nu$ are finite measures on $[a, b]$ such that $ \mu([a, b]) = \nu([a, b])$, $\int_{[a,b]} x \, \mu(dx) = \int_{[a,b]} x \, \nu(dx)$ and $\operatorname{supp}(\nu)\subseteq \{a, b\}$. Then $$ \int_{[a,b]} f(x) \, \mu(dx) \leq \int_{[a,b]} f(x) \, \nu(dx). $$

Indeed, the convexity of $f$ tells that the line $\ell$ joining $(a, f(a))$ and $(b, f(b))$ satisfies $f(x) \leq \ell(x)$ for all $x \in [a, b]$. Then $$ \int_{[a,b]} f(x) \, \mu(dx) \leq \int_{[a,b]} \ell(x) \, \mu(dx) = \int_{[a,b]} \ell(x) \, \nu(dx) = \int_{[a,b]} f(x) \, \nu(dx) $$ The second equality follows from the first two assumptions and the last equality follows since $\nu$ is supported on $\{a, b\}$ and $\ell \equiv f$ on $\{a,b\}$. This completes the proof of Lemma.

Let $\phi$ and $\tilde{f}$ be functions on $I$ defined by $$ \phi(x) = \frac{s-px}{1-p}, \qquad \tilde{f}(x) = \begin{cases} f(x), & x \geq s \\ \frac{f(s) - (1-p)f(\phi(x))}{p}, & x < s \end{cases} $$ Notice that item 2 of the theorem is equivalent to the inequality $f(x) \geq \tilde{f}(x)$ for all $x \in I$. Now consider a random variable $X$ taking values in $\{x_1,\cdots,x_n\} \subseteq I$ with $P[X = x_i] = p_i$ such that $E[X] \geq s$. We want to prove that $E[f(X)] \geq f(EX)$. Write $$ E[f(X)] \geq E[\tilde{f}(X)] = E\left[ \frac{f(s) - (1-p)f(\phi(X))}{p} ; X < s\right] + E[f(X); X \geq s] $$ and notice that $E[f(X) \mid X \geq s] \geq f(E[X \mid X \geq s])$ by the Jensen's inequality. Combining altogether, if we let $m_+ = E[X \mid X \geq s]$, then it suffices to prove that $$ \frac{P[X < s]}{p}f(s) + P[X \geq s] f(m_+) \geq \frac{1-p}{p} E[ f(\phi(X)) ; X < s] + f(E X) \tag{*} $$ The following claim is useful for our purpose:

Claim. If $j$ is any index such that $x_j < s$, then $\phi(x_j) \in (s, m_+]$.

Indeed $\phi(x_j) > s$ is easy to check. To prove the upper bound, let $\tilde{X}$ be a random variable such that $$ P[\tilde{X} = x_i] = \begin{cases} p_i/(1-p), & i \neq j \\ (p_i - p)/(1-p), & i = j \end{cases} $$ Then we easily check that $E[\tilde{X} \mid \tilde{X} \geq s] = m_+$ and hence $$ \phi(x_j) \leq \frac{(EX) - x_j p}{1-p} = E[\tilde{X}] \leq E[\tilde{X} \mid \tilde{X} \geq s] = m_+. $$ This completes the proof of Claim. Therefore, if we write $$ \mu = \frac{1-p}{p} P[\phi(X) \in \cdot \, ; X < s] + \delta_{E X}, \qquad \nu = \frac{P[X < s]}{p} \delta_s + P[X \geq s]\delta_{m_+} $$ then by the claim above both $\mu$ and $\nu$ are finite measures on $[s, m_+]$ and $\text{(*)}$ is equivalent to the inequality $$ \int_{[s,m_+]} f(x) \, \mu(dx) \leq \int_{[s,m_+]} f(x) \, \nu(dx). $$ Finally, this inequality follows from the lemma above since $$ \mu([s,m_+]) = \frac{p[X < s]}{p} + P[X \geq s] = \nu([s,m_+]) $$ and $$ \int_{[s,m_+]} x \, \mu(dx) = \frac{P[X < s]}{p}s + E[X ; X \geq s] = \int_{[s,m_+]} x \, \nu(dx) $$ and $\nu$ is supported on $\{s, m_+\}$. Therefore the desired claim $E [f(X)] \geq f(EX)$ follows. ////

References.

  • [CVB11] Cirtoaje, Vasile, and Alina Baiesu. "An extension of Jensen's discrete inequality to half convex functions." Journal of Inequalities and Applications 2011, no. 1 (2011): 101.