Processing math: 2%

Tuesday, September 12, 2017

Euler's transformation - series acceleration

Theorem. Assume that (an)n0 satisfies lim sup. Then for x\in[0,1) we have \sum_{n=0}^{\infty} (-1)^n a_n x^n = \frac{1}{1+x} \sum_{n=0}^{\infty} (-1)^n \Delta^n a_0 \left( \frac{x}{1+x}\right)^n . \tag{*} Here, both sides converges absolutely and \Delta^n is the n-fold forward difference defined by \Delta^n a_j = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} a_{j+k}.

Proof. There is nothing to prove if x = 0, so we assume throughout that 0 < x < 1. First, absolute convergence of the LHS of \text{(*)} is straightforward. To verify absolute convergence of the RHS, we first note that there exist C and \beta such that 1 < \beta < \frac{x+1}{2x} and |a_n| \leq C \beta^n. Then \frac{1}{2^n} |\Delta^n a_j| \leq \max_{0\leq k \leq n} |a_{j+n}| \leq C\beta^{j+k}. \tag{1} Then absolute convergence of the RHS of \text{(*)} follows from comparison together with the following estimate \left| (-1)^n \Delta^n a_0 \left( \frac{x}{1+x}\right)^n \right| \leq C \left( \frac{2\beta x}{1+x}\right)^n. Next we show the equality \text{(*)}. We write \begin{align*} \sum_{n=0}^{\infty} (-1)^n a_n x^n &= \sum_{n=0}^{\infty} (-1)^n a_0 x^n + \sum_{n=0}^{\infty} (-1)^n (a_n - a_0) x^n \\ &= \frac{a_0}{1+x} - x \sum_{n=0}^{\infty} (-1)^n (a_{n+1} - a_0) x^n. \end{align*} The latter sum can be computed as \begin{align*} \sum_{n=0}^{\infty} (-1)^n (a_{n+1} - a_0) x^n &= \sum_{n=0}^{\infty} (-1)^n \left( \sum_{l=0}^{\infty} \Delta a_l \right) x^n \\ &= \sum_{l=0}^{\infty} \Delta a_l \left( \sum_{n=l}^{\infty} (-1)^n x^n \right) \\ &= \frac{1}{1+x} \sum_{l=0}^{\infty} (-1)^l \Delta a_l x^l. \end{align*} Here, interchanging the order of summations is justified by the absolute convergence. So we obtain \sum_{n=0}^{\infty} (-1)^n a_n x^n = \frac{a_0}{1+x} - \frac{x}{1+x} \sum_{l=0}^{\infty} (-1)^l \Delta a_l x^l. \tag{2} Since we have \limsup_{n\to\infty} |\Delta a_n|^{1/n} \leq 1, we can recursively apply \text{(2)} to obtain \begin{split} \sum_{n=0}^{\infty} (-1)^n a_n x^n &= \frac{1}{1+x} \sum_{n=0}^{N-1} (-1)^n \Delta^n a_0 \left( \frac{x}{1+x}\right)^n \\ &\qquad + \left( -\frac{x}{1+x} \right)^N \sum_{l=0}^{\infty} (-1)^l \Delta^N a_l x^l. \end{split} \tag{3} But by the estimate \text{(1)}, we have \left| \left( -\frac{x}{1+x} \right)^N \sum_{l=0}^{\infty} (-1)^l \Delta^N a_l x^l \right| \leq \left( \frac{2\beta x}{1+x} \right)^N \sum_{l=0}^{\infty} C(\beta x)^{l}. Since \beta x < \frac{2\beta x}{1+x} < 1, this bound vanishes as N \to \infty. Therefore we obtain the desired identity. ////

Example. Let f : [0,\infty) \to \mathbb{R} be a completely monotone function and set a_n = f(n). We know that f admits the representation f(s) = \int_{[0,\infty)} e^{-st} \, \mu(dt) for some finite Borel measure \mu on [0,\infty). Then a simple computation shows that (-1)^n \Delta^n a_0 = \int_{[0,\infty)} (1 - e^{-t})^n \, \mu(dt). This sequence is non-negative and decreases to 0 as n\to\infty. So the limiting form of \text{(*)} is available and we obtain \sum_{n=0}^{\infty} (-1)^n a_n = \sum_{n=0}^{\infty} \frac{(-1)^n \Delta^n a_0}{2^{n+1}}. Notice that the resulting transformation converges exponentially fast regardless of how slow the original series was. As a useful example, consider \mu(dt) = t^{p-1}e^{-t}/\Gamma(p) for p > 0. Then we have the following series acceleration for the Dirichlet eta function: \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)^p} = \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} \sum_{k=0}^{n} \binom{n}{k} \frac{(-1)^{k}}{(k+1)^p}. Of course this can be used to compute the Riemann zeta function.